Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133141, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056262

RESUMO

The input of microplastics (MPs) and warming interfere with soil carbon (C) or nitrogen (N) cycles. Although the effects of warming and/or MPs on the cycles have been well studied, the biological coupling of microbial-driven cycles was neglected. Here, the synergistic changes of the cycles were investigated using batch incubation experiments. As results, the influences of MPs were not significant at 15, 20, and 25 °C, and yet, high temperature (i.e., 30 °C) reduced the respiration of high-concentration MPs-amended soil by 9.80%, and increased dissolved organic carbon (DOC) by 14.74%. In contrast, high temperature did not change the effect of MPs on N. The decrease of microbial biomass carbon (MBC) and the constant of microbial biomass nitrogen (MBN) indicated that microbial N utilization was enhanced, which might be attributed to the enrichments of adapted populations, such as Conexibacter, Acidothermus, and Acidibacter. These observations revealed that high temperature and MPs drove the differential response of soil C and N cycles. Additionally, the transcriptomic provided genomic evidence of the response. In summary, the high temperature was a prerequisite for the MPs-driven response, which underscored new ecological risks of MPs under global warming and emphasized the need for carbon emission reduction and better plastic product regulation.


Assuntos
Microplásticos , Plásticos , Solo , Carbono , Microbiologia do Solo , Nitrogênio/análise , Ciclo do Nitrogênio
2.
J Environ Sci (China) ; 138: 458-469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135411

RESUMO

In order to explore an efficient and green method to deal with nitrobenzene (NB) pollutant, reduced graphene oxide (rGO) as an electron shuttle was applied to enhance the extracellular electron transfer (EET) process of Geobacter sulfurreducens, which was a typical electrochemically active bacteria (EAB). In this study, rGO biosynthesis was achieved via the reduction of graphene oxide (GO) by G. sulfurreducens PCA within 3 days. Also, the rGO-PCA combining system completely reduced 50-200 µmol/L of NB to aniline as end product within one day. SEM characterization revealed that PCA cells were partly wrapped by rGO, and therefore the distance of electron transfer between strain PCA and rGO material was reduced. Beside, the ID/IG of GO, rGO, and rGO-PCA combining system were 0.990, 1.293 and 1.31, respectively. Moreover, highest currents were observed in rGO-PCA-NB as 12.950 µA/-12.560 µA at -408 mV/156 mV, attributing to the faster electron transfer efficiency in EET process. Therefore, the NB reduction was mainly due to: (I) direct EET process from G. sulfurreducens PCA to NB; (II) rGO served as electron shuttle and accelerated electron transfer to NB, which was the main degradation pathway. Overall, the biosynthesis of rGO via GO reduction by Geobacter promoted the NB removal process, which provided a facile strategy to alleviate the problematic nitroaromatic pollution in the environment.


Assuntos
Geobacter , Grafite , Grafite/química , Nitrobenzenos/metabolismo
4.
ISME J ; 17(7): 1104-1115, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161002

RESUMO

Emerging evidence from genomics gives us a glimpse into the potential contribution of lysogenic bacteriophages (phages) to the environmental adaptability of their hosts. However, it is challenging to quantify this kind of contribution due to the lack of appropriate genetic markers and the associated controllable environmental factors. Here, based on the unique transformable nature of arsenic (the controllable environmental factor), a series of flooding microcosms was established to investigate the contribution of arsM-bearing lysogenic phages to their hosts' adaptation to trivalent arsenic [As(III)] toxicity, where arsM is the marker gene associated with microbial As(III) detoxification. In the 15-day flooding period, the concentration of As(III) was significantly increased, and this elevated As(III) toxicity visibly inhibited the bacterial population, but the latter quickly adapted to As(III) toxicity. During the flooding period, some lysogenic phages re-infected new hosts after an early burst, while others persistently followed the productive cycle (i.e., lytic cycle). The unique phage-host interplay contributed to the rapid spread of arsM among soil microbiota, enabling the quick recovery of the bacterial community. Moreover, the higher abundance of arsM imparted a greater arsenic methylation capability to soil microbiota. Collectively, this study provides experimental evidence for lysogenic phages assisting their hosts in adapting to an extreme environment, which highlights the ecological perspectives on lysogenic phage-host mutualism.


Assuntos
Arsênio , Bacteriófagos , Bacteriófagos/genética , Arsênio/toxicidade , Lisogenia , Bactérias/genética , Solo
5.
Environ Pollut ; 325: 121444, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921658

RESUMO

Electron shuttles (ES) can mediate long-distance electron transfer between extracellular respiratory bacteria (ERB) and the surroundings. However, the effects of graphite structure in ES on the extracellular electron transfer (EET) process remain ambiguous. This work investigated the function of graphite structure in the process of nitrobenzene (NB) degradation by Geobacter sulfurreducens PCA, in which highly aromatic carbon nanotubes (CNTs) was studied as a typical ES. The results showed that the addition of 1.5 g L-1 of CNTs improved the NB biodegradation up to 81.2%, plus 18.8% NB loss due to the adsorption property of CNTs, achieving complete removal of 200 µM NB within 9 h. The amendment of CNTs greatly increased the EET rate, indicating that graphite structure exhibited excellent electron shuttle performance. Furthermore, Raman spectrum proved that CNTs obtained better graphite structure after 90 h of cultivation with strain PCA, resulting in higher electrochemical performance. Also, CNTs was perceived as the "Contaminant Reservoir", which alleviated the toxic effect of NB and shortened the distance of EET process. Overall, this work focused on the effects of material graphite structure on the EET process, which enriched the understanding of the interaction between CNTs and ERB, and these results might promote their application in the in-situ bioremediation of nitroaromatic-polluted environment.


Assuntos
Grafite , Nanotubos de Carbono , Oxirredução , Grafite/metabolismo , Transporte de Elétrons , Nitrobenzenos
6.
Chemosphere ; 312(Pt 1): 137145, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343739

RESUMO

The rapid recombination of photogenerated electrons and holes, low utilization of visible light and weak oxidation capacity significantly limit the photocatalytic activity for the degradation of organic pollutants. Doping is used as a conventional strategy for regulating the electronic structure of photocatalysts to obtain a wider light absorption, but also suffers from the problems of reduced charge mobility and oxidation capacity, which is not conducive to photocatalytic degradation of pollutants. To address this issue, a nitrogen self-doped hollow nanotubes g-C3N4 (N-PCN) was synthesized by synergistic self-doping and quantum confinement effects. The N-PCN exhibits excellent efficiency in photocatalytic degradation of TC compared to the pristine g-C3N4. The synthesized N-PCN has a more positive conduction band minimum and can generate more photogenerated electrons to reduce oxygen to superoxide radicals. In addition, experimental and theoretical evidence shows that N-self-doping not only suppresses the recombination of photogenerated charge carriers but also facilitates the adsorption of oxygen molecules. Consequently, more superoxide radicals and singlet oxygen are generated through oxygen activation process.


Assuntos
Poluentes Ambientais , Catálise , Nanotubos de Carbono/química , Nitrogênio , Oxigênio/química , Superóxidos
7.
FEMS Microbiol Ecol ; 98(12)2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36367530

RESUMO

Biochar is well known as an effective means for soil amendment, and modification on biochar with different methods could improve the benefits for environmental remediation. In this study, two modified biochars were generated with nitric acid (NBC) and hydrogen peroxide (OBC) pretreatment, and a control biochar was produced after washing with deionized water (WBC). The dynamics of short-chain fatty acids (SCFAs), iron concentration and bacterial community in rice paddy soil amended with different biochars or without adding biochar (CK) were studied during 70 days of anaerobic incubation. Compared to CK treatment, the accumulation of SCFAs was largely inhibited by the amendment of biochars. Besides, OBC and WBC increased the accumulation of Fe(II) at the initial stage of incubation. Via 16S rRNA gene sequencing, modified biochars caused significant response of bacterial community in comparison to WBC at Day 0-1, and three biochars favored bacterial α-diversity in the paddy soil at the end of the incubation. Interestingly, positive and negative correlations between NBC and several bacteria taxa (e.g. Geobacter, Fonticella and Clostridium) were observed. The study revealed that modified biochars had significant effects on the shifts of SCFAs, Fe(III) reduction and bacterial diversity, which provides fundamental information for future application of modified biochars in rice cropping ecosystem.


Assuntos
Oryza , Poluentes do Solo , Solo , Poluentes do Solo/análise , Ecossistema , RNA Ribossômico 16S/genética , Compostos Férricos , Carvão Vegetal , Bactérias/genética , Ácidos Graxos Voláteis , Ferro
8.
Water Res ; 226: 119183, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244146

RESUMO

In wastewater treatment plants (WWTPs), the stable operation of biological wastewater treatment is strongly dependent on the stability of associated microbiota. Bacteriophages (phages), viruses that specifically infect bacteria and archaea, are highly abundant and diverse in WWTPs. Although phages do not have known metabolic functions for themselves, they can shape functional microbiota via various phage-host interactions to impact biological wastewater treatment. However, the developments of phage-host interaction in WWTPs and their impact on biological wastewater treatment are overlooked. Here, we review the current knowledge regarding the phage-host interactions in biological wastewater treatment, mainly focusing on the characteristics of different phage populations, the phage-driven changes in functional microbiota, and the potential driving factors of phage-host interactions. We also discuss the efforts required further to understand and manipulate the phage-host interactions in biological wastewater treatment. Overall, this review advocates more attention to the phage dynamics in WWTPs.


Assuntos
Bacteriófagos , Microbiota , Águas Residuárias , Purificação da Água , Archaea , Bactérias , Bacteriófagos/fisiologia , Águas Residuárias/microbiologia , Águas Residuárias/virologia
9.
Org Lett ; 24(41): 7517-7521, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36214606

RESUMO

An 11-step enantioselective total synthesis of (+)-sieboldine A (1) has been accomplished from (5R)-methylcyclohex-2-en-1-one (16), in which an intramolecular ketone/ester reductive coupling followed by one-pot acidic treatment to quickly construct the unique oxa-spiroacetal and a TsOH-catalyzed displacement to directly form the characteristic N-hydroxyazacyclononane ring successfully served as the key methodologies. Moreover, several full-skeleton analogues of 1 were also synthesized on the basis of the advanced intermediates, and their inhibitory effects on electric eel acetylcholinesterase were examined.


Assuntos
Acetilcolinesterase , Cetonas , Estereoisomerismo , Ésteres
10.
J Org Chem ; 87(13): 8685-8696, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699523

RESUMO

A unified route for the total synthesis of three tetracyclic diquinane Lycopodium alkaloids (+)-paniculatine, (-)-magellanine, and (+)-magellaninone has been accomplished in 13-14 overall steps based on late-stage diverse transformations from an advanced tetracyclic common intermediate. In the established synthesis, quick formation of the two five-membered rings was efficiently achieved by an intramolecular reductive coupling of ketone-carbonyl and ester-carbonyl and an organocatalytic intramolecular Michael addition of aldehyde-derived enamine to an internal enone functionality with satisfactory redox and step economies and excellent stereoselectivities, providing the requisite tricyclic carbo-framework possessing multiple dense stereogenic centers, and an intramolecular reductive amination finally furnished the essential piperidine ring.


Assuntos
Alcaloides , Lycopodium , Compostos Heterocíclicos de 4 ou mais Anéis , Estrutura Molecular , Estereoisomerismo
11.
Chemosphere ; 304: 135288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35691388

RESUMO

Modified biochars have been widely applied in ameliorating environmental problems. However, the effect of modified biochar on suppressing CH4 emission in rice paddy soil is not fully understood. In order to further study CH4 regulation in paddy soil via the modification of biochar and explore its influence on key archaeal communities, two modified biochars were generated with the pre-treatment of nitric acid (NBC) and hydrogen peroxide (OBC), respectively, and a control group was setup with water-washed biochar (WBC). Results showed that NBC significantly suppressed CH4 emission, followed by OBC and WBC, while NBC promoted the CO2 emission. Besides, the addition of biochars inhibited the accumulation of acetate and H2 in rice paddy soil, especially in the NBC treatment. 16S rRNA gene sequencing revealed that biochars amendment increased α-diversity of archaeal community and the modified biochars could mitigate the loss of α-diversity in the early stage of anaerobic incubation. Additionally, NBC amendment largely declined the relative abundance of methanogens (especially Methanosarcina) in archaeal community, while OBC and NBC promoted the relative abundance of Candidatus_Methanoperedens. Via Spearman's correlation coefficient analysis, NBC had positive correlations with Methanosaeta, and OBC showed a negative correlation with Methanocella. Overall, this study provided a practical way to regulate the CH4 emission and associated methanogenic archaea via the amendment of different modified biochars in rice paddy soil.


Assuntos
Oryza , Solo , Archaea/genética , Carvão Vegetal , Metano , Oryza/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo
12.
Chemosphere ; 283: 130983, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153910

RESUMO

Biochar was proved as an electron shuttle to facilitate extracellular electron transfer (EET) of electrochemically active bacteria (EAB); however, its underlying mechanism was not fully understood. In this study, we aimed to further explore how the regulation of surface functional groups of biochar would affect the microbial iron reduction process of Geobacter sulfurreducens as a typical EAB. Two modified biochars were achieved after HNO3 (NBC) and NaBH4 (RBC) pretreatments, and a control biochar was produced after deionized water (WBC) washing. Results showed that WBC and RBC significantly accelerated microbial iron reduction of G. sulfurreducens PCA, while had no effect in the final Fe (II) minerals (e.g., vivianite and green rust (CO32-)). Besides, Brunauer-Emmett-Teller (BET) surface area, electron spin resonance (ESR) and electrochemical measurements showed that larger surface area, lower redox potential, and more redox-active groups (e.g., aromatic structures and quinone/hydroquinone moieties) in RBC explained its better electron transfer performance comparing to WBC. Interestingly, NBC completely suppressed the Fe (III) reduction process, mainly due to the production of reactive oxygen species which inhibited the growth of G. sulfurreducens PCA. Overall, this work paves a feasible way to regulate the surface functional groups for biochar, and comprehensively revealed its effect on EET process of microorganisms.


Assuntos
Geobacter , Carvão Vegetal , Transporte de Elétrons , Compostos Férricos , Ferro , Oxirredução
13.
Org Lett ; 23(9): 3578-3583, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33891425

RESUMO

A short, scalable, and collective total synthesis of four fawcettimine-type Lycopodium alkaloids in eight or nine steps is disclosed. A dense multi-small-ring spiro-α-aminocyclopentanone successfully served as the key intermediate, which was directly accessed by a LiDBB-mediated intramolecular reductive coupling of the aliphatic imine and an ester-carbonyl. Compared to those that employ classical Heathcock intermediate(s) containing a nine-membered ring, the new strategy shows the significant improvement of the synthetic step and redox economies as well as excellent stereochemical control.

14.
Chemosphere ; 256: 127141, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32470738

RESUMO

To explore a green, low-cost, and efficient strategy to synthesis reduced graphene oxide (RGO), the process and mechanism of the graphene oxide (GO) reduction by a model electrochemically active bacteria (EAB), Geobacter sulfurreducens PCA, were studied. In this work, up to 1.0 mg mL-1 of GO was reduced by G. sulfurreducens within 0.5-8 days. ID/IG ratio in reduced product was similar to chemically RGO. After microbial reduction, the peak which corresponded to the reflection of graphene oxide (001) disappeared, while another peak considered as graphite spacing (002) appeared. The peak intensity of typical oxygen function groups, such as carboxyl C-O and >O (epoxide) groups, diminished in bacterially induced RGO comparing to initial GO. Besides, we observed the doping of nitrogen and phosphorus elements in bacterially induced RGO. In a good agreement with that, better electrochemical performance was noticed after GO reduction. As confirmed with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) analysis, the maximum value of peak currents of bacterially induced RGO were significantly higher than those of GO. Our results showed the electron transfer at microbial cell/GO interface promoted the GO reduction, suggesting a broader application of EAB in biological mediated production of RGO.


Assuntos
Geobacter/metabolismo , Grafite/química , Produtos Biológicos , Elétrons , Grafite/síntese química , Óxidos
15.
Chemosphere ; 226: 405-412, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30947050

RESUMO

In this study, a novel adsorbent thiol functionalized magnetic carbon nanotubes (CNTs-SH@Fe3O4) was synthesized to overcome somewhat existing difficulties during the Hg(II) adsorption process, including low efficiency and selectivity, narrow feasible pH range and difficult to separate and reuse. The Hg(II) adsorption performance of CNTs-SH@Fe3O4 was evaluated using batch experiment and its physiochemical properties were investigated by characterization techniques. The batch experiment results showed that the prepared CNTs-SH@Fe3O4 maintained high Hg(II) adsorption efficiency (>98%) over wide pH range from 3 to 11. The selective adsorption of Hg(II) by CNTs-SH@Fe3O4 was achieved with the coexistence of Cu(II), Mg(II) or Zn(II) ions, in which adsorbate matrix Hg(II) removal efficiency of 81.39%, 89.36% and 95.52% was obtained, respectively. CNTs-SH@Fe3O4 kept high Hg(II) removal efficiency (>80%) and good magnetic property (Ms value > 21 emg g-1) after five cycles of adsorption/regeneration. The Hg(II) adsorption kinetics could be better described by pseudo-second-order kinetic model. Freundlich model showed higher correlation coefficient in adsorption isotherms study, and the calculated maximum adsorption capacity was 172.4 mg g-1. Thermodynamic study suggested that the adsorption process was exothermic in nature. Surface adsorption, complex adsorption and reduction adsorption were all contributed to the removal of Hg(II) using CNTs-SH@Fe3O4.


Assuntos
Mercúrio/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Adsorção
16.
Chemosphere ; 198: 13-20, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421721

RESUMO

In order to recover mercury from high concentration Hg(II) acid wastewater, UV irradiation was used to reduce Hg(II) to Hg2Cl2 with the presence of fulvic acid and chloride ion. When simulated wastewater with Hg(II) concentration of 1000 mg L-1 was treated, > 90% of Hg(II) removal efficiency was achieved under the condition of extra Cl- dosage of 5 g L-1, FA dosage of 2 g L-1, pH of 3.0 and 120 min of UV irradiation. Kinetics study showed that the photoreduction process could be well described by pseudo-first order kinetic mode, and the Hg(II) reduction rate was tested to be 0.0422 min-1. Characterization results indicated that FA-Hg(II) complexes were firstly formed and then broken down into smaller molecules after the UV treatment, in which process highly reductive species (i.e. COO, COOH) were produced. These reductive species mediated the reduction of Hg(II). With the presence of Cl-, Hg2Cl2 was practically the only detected Hg-based product in the photoreduction process. This technique was also employed to treat CODCr analysis wastewater (initial Hg(II) concentration > 1000 mg L-1). With 90 min of reaction, most of the Hg(II) was removed from the system leaving less than 30% that could be further treated by chemical participation or adsorption method.


Assuntos
Benzopiranos/química , Mercúrio/efeitos da radiação , Águas Residuárias/química , Anaerobiose , Concentração de Íons de Hidrogênio , Cinética , Mercúrio/química , Compostos de Mercúrio , Poluentes Químicos da Água/química
17.
J Org Chem ; 81(5): 1899-904, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26871307

RESUMO

A new enantioselective total synthesis of phlegmarine-type Lycopodium alkaloid lycoposerramine-Z (1) has been accomplished, using one-pot chemoselective sequential additions of two different Grignard reagents to the bis-Weinreb-amide intermediate and an efficient construction of the fully fuctionalized cyclohexanone intermediate with a chiral phosphoric acid catalyzed enantioselective intramolecular Michael addition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...